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ABSTRACT 

 In this paper, a numerical method for Nth- order Fuzzy Initial Value Problems (FIVP) based on Seikkala derivative 

of fuzzy process is studied. The non-linear trapezoidal method based on logarithmic mean is used to find the numerical 

solution of the FIVP and the convergence and stability of the method is given. This method is illustrated by solving second 

and third order FIVPs. 
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1. INTRODUCTION 

 The research work on Fuzzy Differential Equations (FDEs) has been rapidly developing in recent years.                   

The concept of the fuzzy derivative was first introduced by Chang and Zadeh[8],it was followed up by Dubois and Prade 

[10] by using the extension principle in their approach. Other methods have been discussed by Puri and Ralescu [27] and 

Goetschel and Voxman [17]. Kandel and Byatt [24] applied the concept of fuzzy differential equation to the analysis of 

fuzzy dynamical problems. The FDE and the initial value problem (Cauchy problem) were rigorously treated by Kaleva 

[22, 23], Seikkala [29], He and Yi [18]. The numerical methods for solving fuzzy differential equations are introduced by 

Abbasbandy et.al. and Allahviranloo et.al. in [2, 3]. Buckley and Feuring [7] introduced two analytical methods for solving 

Nth - order linear differential equations with fuzzy initial value conditions. Their first method of solution was to fuzzify the 

crisp solution and then check to see if it satisfies the differential equation with fuzzy initial conditions; and the second 

method was the reverse of the first method, they first solved the fuzzy initial value problem and the checked to see if it 

defined a fuzzy function. Allahviranloo et.al [4, 5] proposed the methods for solving Nth – order fuzzy differential 

equations. Jayakumar et.al [21] used the Runge - Kutta Nystrom method for solving Nth – order fuzzy differential 

equations. Ivaz et.al [19] developed a numerical method namely trapezoidal rule for fuzzy differential equations and hybrid 

fuzzy differential equations. Gethsi Sharmila and Henry Amirtharaj [14,15]introduced the numerical solution of first-order 

fuzzy initial value problem by non-linear trapezoidal formulae based on variety of meansand developed a numerical 

algorithm for finding the solution of FIVPs by fourth order Runge-Kutta method based on Contra-harmonic mean.                 

Gethsi Sharmila and Henry Amirtharaj [16] developed a numerical algorithm for finding the solution of Nth-order fuzzy 

initial value problems by fourth order Runge-Kutta method based on Centroidal Mean. 

 Non-linear trapezoidal formulae based on variety of means have found wide applications in the studies like 

mechanical vibrations, electrical circuits, planetary motions, etc. Several Researchers have applied non-linear trapezoidal 
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formulae based on variety of means and analyze their error control and stability analysis. Necdet Bildik and Mustafa 

Inc[26] studied on the numerical solution of Initial value problems for non-linear trapezoidal formulae with different types.  

 D. J. Evans and B. B. Sanugi [11] compared the non-linear trapezoidal formulae using Euler, Harmonic mean,           

and logarithmic mean for solving IVPs Abdul-Majid Was was [30] made a comparison of modified Runge - Kutta 

formulae based on variety of means. K. Murugesan, et.al.[25] have done a comparison of extended Runge-Kutta formulae 

based on variety of means to solve systems of IVPs.  

 In engineering and physical problems, Trapezoidal rule is a simple and powerful method to solve numerically 

related ODEs. Trapezoidal rule has a higher convergence order in comparison to other one step methods, for instance, 

Euler method. 

 In this paper, the numerical methods to solve Nth - order linear fuzzy initial value problem is presented using the 

non-linear trapezoidal method based on logarithmic mean. The structure of the paper is organized as follows: In Section 2, 

we briefly present the fuzzy preliminaries are given. A fuzzy initial value problem is defined in Section 3. Trapezoidal rule 

and the non-linear trapezoidal formulae based on logarithmic mean for solving FIVPs are given in section 4. Convergence 

and stability of the mentioned method is proved in section 5. The step size control with the numerical method is discussed 

in section 6. The proposed algorithm is illustrated by solving the second and third order FIVPs in Section 7 and the 

conclusion is drawn in Section 8. 

2. PRELIMINARIES 

 An arbitrary fuzzy number is represented by an ordered pair of functions 

 ( ) ( )( ),u r u r for all [ ]0,1r ∈ , which satisfy the following requirements: 

• ( )u r is a bounded left continuous non-decreasing function over [0,1], 

• ( )u r is a bounded left continuous non-increasing function over [0,1], 

• 
( ) ( ) ,  0 1.u r u r r≤ ≤ ≤

 

 Let E be the set of all upper semi-continuous normal convex fuzzy numbers with bounded α −  level intervals. 

Lemma 2.1 

 Let ( ), ( ) ,  (0,1]v vα α α  ∈   be a given family of non-empty intervals. If 

( ) [ ( ), ( )] [ ( ), ( )] for 0 < ,   and ( ) [lim ( ), lim ( )] [ ( ), ( )],  k k
k k

i v v v v ii v v v vα α β β α β α α α α
→∞ →∞

⊃ ≤ =  

 whenever( )kα is a non-decreasing sequence converging to (0,1]α ∈ , then the family

[ ( ), ( )],  (0,1]v vα α α ∈ represent the α −  level set of fuzzy number v in E. Conversely if [ ( ), ( )],  (0,1]v vα α α ∈ , 

are α −  level set of fuzzy numberv E∈ then the conditions (i) and (ii) hold true. 
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Definition 2.1 

 Let I be a real interval. A mapping :v I E→ is called a fuzzy process and denote the α −  level set by 

( )[ ] [ ( , ), ( , )].v t v t v tα α α=  The Seikkala derivative ( )'v t of v is defined by ( )[ ' ] [ '( , ), '( , )],v t v t v tα α α=
                

provided that is a equation defines a fuzzy number '( )v t E∈  

Definition 2.2 

 Suppose u and v are fuzzy sets in E. Then their Hausdorff 

 
{ }: 0 ,D E E R+× → U { }

[0, 1]
( , ) sup max ( ) ( ) ,  ( ) ( ) ,D u v u v u v

α
α α α α

∈
= − −  

 i.e ( , )D u v is maximal distance between α level sets of u andv . 

3. FUZZY INITIAL VALUE PROBLEM  

 Now we consider the initial value problem 

 
( ){ ( )1 ( 1)

1 ,( ) ( , , ,..., ),  (0) ,...,  (0)n n n
nx t t x x x x a x aψ − −′= = =                                                                      (3.1) 

 whereψ is a continuous mapping from nR R+ × into R and (0 )ia i n≤ ≤ are fuzzy numbers in E .                        

The mentioned Nth - order fuzzy differential equation by changing variables 

 
( 1)

1 2( ) ( ),  y ( ) ( ),...,  y ( ) ( ),n
ny t x t t x t t x t−′= = =  

 converts to the following fuzzy system 

 

1 1 1

1

[0] [0]
1 1 1

( ) ( , ,...,  y ),

( ) ( , ,...,  y ),

(0) ,...,  y (0) ,

n

n n n

n n n

y t f t y

y t f t y

y y a y a

•
•
•

′ =


 ′ =
 = = = =



                                                                                                 (3.2) 

 where  (1 i n)if ≤ ≤ are continuous mapping from nR R+ × into R and [0]
iy are fuzzy numbers in E with                  

α - level intervals.  

 

[0][0][0][ ] [ ( ), ( )] for i = 1,..., n and 0 1i ii
y y yα α α α= ≤ ≤  

 We call 1( ,...,  y )Tny y= is a fuzzy solution of (3.2) on an interval I, if  
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}{
}{

1

1

( , ) = min ( , ,...,  u );  u [ ( , ),  ( , ) ] ( , ( , )),

( , ) = max ( , ,...,  u );  u [ ( , ),  ( , ) ] ( , ( , )) ,

i n j ji j i

i n ji j ij

y t f t u y t y t f t y t

y t f t u y t y t f t y t

α α α α

α α α α

′ ∈ =

′ ∈ =
      (3.3)

 

 and 

 

[0][0](0, ) ( ),  (0, ) ( )i ii i
y y y yα α α α= =

                                                                                                       (3.4)
 

 Thus for fixed α we have a system of initial value problem in2nR . If we can solve it (uniquely), we have only to 

verify that the intervals, [ ( , ), ( , )]jj
y t y tα α define a fuzzy number ( ) .iy t E∈

 
Now let 

[0] [0] [0]

1
( ) ( ( ),..., ( ))T

n
y y yα α α=  and 

[0] [0] [0]

1( ) ( ( ),..., ( ))Tny y yα α α= with respect to the above mentioned 

indicators, system (3.2) can be written as with assumption 

 
[0]

( ) ( , ( )),

(0) .n

y t F t y t

y y E

′ =
 = ∈                                                                                                                                            (3.5) 

 With assumption 

 

( , ) [ ( , ), ( , )]  y ( , ) [ ( , ), ( , )]y t y t y t and t y t y tα α α α α α′′′= =                                                                   
(3.6) 

 where 

 
( , ) [ ( , ),...,  ( , )] ,Ty t y t y tα α α=                                                                                                                     (3.7) 

 
( , ) [ ( , ),...,  ( , )] ,Ty t y t y tα α α′ ′ ′=                                                                                                                  (3.8) 

 ( , ) [ ( , ),...,  ( , )] ,Ty t y t y tα α α′ ′ ′=                                                                                                                  (3.9) 

 and with assumption ( , ( , )) [ ( , ( , ))), ( , ( , ))]F t y t F t y t F t y tα α α= , where 

 1
( , ( , )) [ ( , ( , ))),...,  ( , ( , ))]T

n
F t y t f t y t f t y tα α α= ,                                                                                (3.10) 

 1( , ( , )) [ ( , ( , ))),...,  ( , ( , ))]TnF t y t f t y t f t y tα α α= ,                                                                                (3.11) 

 y (t) is a fuzzy solution of (3.5) on an interval I for all α ∈ (0,1], if  
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[0][0]

( , )) ( , ( , ));

( , )) ( , ( , ))

(0, ) ( ),  (0, ) ( )

y t F t y t

y t F t y t

y y y y

α α

α α

α α α α

 ′ =

 ′ =


= =


                                                                                                       (3.12) 

 or 

 
[0]

( , )) ( , ( , )),

(0, ) ( ).

y t F t y t

y y

α α
α α

′ =
 =

                                                                                                                             (3.13) 

 Now we show that under the assumptions for functions ,   i=1,..., nif for how we can 

 obtain a unique fuzzy solution for system (3.2). 

Theorem 3.1 

 If 1( , ,...,  u )i nf t u for 1,...,  ni = are continuous function of t and satisfies the 

 Lipschitz condition in 1 ( ,...,  u )Tnu u= in the region  

 
{ }, [0,1],   i=1,..., niD t u t I u for= ∈ = −∞ < < ∞ with constant iL then the initial 

 value problem (3.2) has a unique fuzzy solution in each case. 

 Proof. Refer [1] 

4. THE NON-LINEAR TRAPEZOIDAL METHOD BASED ON LOGAR ITHMIC MEAN TO SOLVE 
FUZZY INITIAL VALUE PROBLEM 

4.1 Preliminary Notes 

4.1.1 Non-Linear Trapezoidal Formulae 

Increment Function of Logarithmic Mean 

 We consider the initial value problem for a first order ordinary differential equation 

 �′ = ���, ��, ����� = ��                                                                                                                                        (4.1) 

 The function ���, �� is to be continuous for all ��, ��in some domain D of the xy-plane, and �	�, ��� is a point in 

D where D={(t, y)/a ≤t ≤ b, -∞<y<∞} 

 Suppose we want to compute an approximate value ���� (� being some real number) which will be existent and 

unique. To compute this numerical approximation, we use one-step method of the form �
�� = �
 + ℎΦ��
, �
��, �
 , �
��, ℎ�, � = 0,1, …� − 1.                                                                                                   (4.2) 

 with an increment function Φ of certain special type. Here, n is a (user-chosen) arbitrary step size parameter, and 

 put ℎ = �����
 and�
 = �� + �ℎ, ���� = 1,… , �.                                                                                                   (4.3) 

 Finally, we take the value ���: ℎ� = �
as an approximation of the desired result����. 
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 One of the most popular choices for the increment function Φ is the arithmetic mean of the two values                     �
 = ���
, �
�and �
�� = ���
��, �
��� 
 i.e. Φ���
, �
��, �
 , �
��, ℎ� = ������ ! which yields the trapezoidal rule. This is a one-step implicit                       

finite-difference method which is frequently employed for the numerical solution of (4.1). In fact it is well known that it is 

the most accurate A- stable multi-step method [9].  

 However, it has been pointed out by D. J. Evans and B.B. Sanugi that taking the arithmetic mean is not in all 

cases the best choice, and consequently the use of other means, e.g. Geometric, Harmonic or logarithmic ones has been 

studied. The resulting methods were denoted as non-linear trapezoidal formulae. 

 Now, let Φ denote one of the increment function, defined through non- linear logarithmic mean: 

 Φ
"��
, �
��, �
, �
��, ℎ�= #��� ���$
%&�� &� '( (Logarithmic)  

 The standard Trapezoidal formula based on arithmetic mean (AM) formula for solving initial value problems of 

the form � ′ = ���, ��, ����� = �� is written in the form 

 �
��)�
 + ℎ %������ ! ', where h is the mean length in the local t-direction. 

 The Non-linear Trapezoidal formula based on logarithmic mean is :






























−+=
+

+
+

f

f

ff
hyy

n

nn
nn

1

1
1

ln

 , 

 its Local Truncation Error is ( ) ( )4
'

'''''
3

11 1212

2

ho
y

yy
hyty

n

nn
nn +














−−=− ++  

 and Stability of this method is: L- stable. 

4.2 Non-Linear Trapezoidal Method Based on Logarithmic Mean Formula for Solving System of IVPs 

 Evans and Sanugi[11] have developed a new Non-linear trapezoidal method based on Logarithmic Mean to solve 

first order equation and it is to be noted that the Logarithmic mean for the two positive quantities 1 and +ii ff is defined as 

 










−

+

+

i

i

ii

f

f

ff

1

1

ln

.                                                                                                                                                            (4.4) 

 In conjunction with the logarithmic mean given by (4.1) we may now form the corresponding integration formula 

to solve Nth - order IVPs given by  
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1
1

1

,   1

ln

n j nj
n j nj

n j

nj

y y
y y h j m

y

y

+
+

+

 
 
 ′ ′−
 = + ≤ ≤

 ′ 
  
 ′   

 

 Since it is of implicit nature,to find the value of 1n jy +
′ , one can use the classical fourth order Runge- Kutta 

formula. 

4.2Non-Linear Trapezoidal Method Based on Logrithmic Mean for Solving Nth-Order FIVPs 

 We consider the Nth-order fuzzy initial value problem (3.2) with the unique solution 1,( ,...,  y )T n
ny y E= ∈ . 

For finding an approximate solution of (3.2) with the trapezoidal rule based on Arithmetic mean, we first define the 

trapezoidal rule as follows: 

 �*��+, = �*+, + -! .�+,/�*, �*0 + �+,/�*��, �*��01 
 �*��+, = �*+, + -! .�+,/�*, �*0 + �+/�*��, �*��01                                                                                                  (4.5) 

 Np0for  , , ≤≤== γγ αα
pp

yy . 

 Formulae for solving Nth- order fuzzy initial value problem by using non-linear Trapezoidal formulae based on 

logarithmic mean is given as follows: 

 Logarithmic Mean: �*��+, = �*+, + ℎ 2�34/�5� ,65� 0��34/�5,6507
#&34/85� ,95� 0&34/85,950 ( : 

 �*��+, = �*+, + ℎ
;<<
<=�34/�5� ,65� 0��34/�5,650

7
>&34/85� ,95� 0&34/85,950 ? @AA
AB
                                                               (4.6)

 Np0for  , , ≤≤== γγ αα
pp

yy . 

 The classical fourth order Runge-Kutta method [1] for solving Nth – order fuzzy initial value problem can be used 

to find the value of jpjp
yy 11

 , ++
, since this formula is of implicit nature. 

5. CONVERGENCE AND STABILITY [1] 

Definition 5.1 

A one-step method for approximating the solution of a differential equation

                                                      

(5.1)
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Which F is a Nth- ordered as follow 1( ,...,  )Tnf f f= and :  R (1 ),n
if R R i n+ × → ≤ ≤ is a method which 

can be written in the form  

 
[ 1] [ ]   ( , , ),n n n

ny y h t y hψ+ = +                                                                                                                        (5.2) 

where the increment function ψ is determined by F and is a function of [ ], n
nt y and h only. 

Theorem 5.1 

If  ( , , )t y hψ satisfies a Lipschitz condition in y, then the method given by (5.2) is stable. 

Theorem 5.2 

In relation (3.5), if F(t, y) satisfies a Lipschitz condition in y, then the method given by (4.6) is stable. 

Theorem 5.3 

If [ 1] [ ] [0] [ ]( ) ( )   ( , ( ), ),   y ( ) ( )m m m m
my y h t y h Yα α ψ α α α+ = + =

                                                           (5.3) 

 where 1 2 ( , ( ), ) [  ( , ( ), ),   ( , ( ), )]m m m
m m mt y h t y h t y hψ α ψ α ψ α= is a numerical method for approximation 

of differential equation (3.13), and 1 2 and ψ ψ are continuous in t, y, h for 00 ,  0t T h h≤ ≤ ≤ ≤ and all y, and if they 

satisfy a Lipschitz condition in the region 

 { }0, , , ) 0 ,  ,  ,  0  i=1, ..., n ,i i iD t u v h t T u v v h h= ≤ ≤ − ∞ < ≤ − ∞ < ≤ +∞ ≤ ≤ necessary and 

sufficient conditions for convergence above mentioned method is 

 ( , ( , ), ) ( , ( , )).t y t h F t y tψ α α=                                                                                                                       (5.4) 

6. STEP SIZE CONTROL  

 An important consideration in using the discrete method is that of estimating the local error and of selecting the 

proper step size to achieve a required accuracy. There is no reason why the step size h  needs to be kept fixed over the 

entire interval. Estimating the accuracy using different fixed step sizes may be very inefficient. In this section we will 

examine methods for estimating the local error and for varying the step size according to some error criterion. 

 The method is based on interval halving. Let us assume that we are using the method of order p and that we have 

arrived at a point nt with 1-nn  t-  t =h . We now integrate fromnt to h    t t n1-n += twice, once using the current step h 

and again two steps of length2
h . We will thus obtain two estimates )( 1+nh ty and )( 12/ +nh ty of the value of )( ty at 

  tt 1-n= and a comparison of these two estimates will yield an estimate of the error. To derive the estimate of order p has a 

local asymptotic error expansion of the form.  

 
)(0)(  )(  )( 1+++++=+ pp

nnnh hhmhtCmhtymhty                                                                              (6.1) 
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 Here  )( mhty nh + denotes the approximation to the solution y(x) at the point mh  t n +=x . Further the 

constant )( mhtC n +  does not depend on h, though it does depend on f(t,y) and on the point mh  t n +=t . Therefore 

 
)(0)(  )(  )( 1

111
+

+++ ++= pp
nnnh hhtCtyty                                                                                                      (6.2) 

 
)(0)2/)((  )(  )( 1

1112
+

+++ ++= pp
nnnh hhtCtyty                                                                                          (6.3) 

 on subtracting (6.2) from (6.3) we find that the principal part of the error in (6.3) can be estimated as  

 
p

nhnhp
n

tytyh
C

21

)( )(
)

2
( 112

−
−

≈ ++
 

 The quantity  

 1 - 2

)( )( 112

p

nhnh

n

tyty
D

++ −
≈                                                                                                                             (6.4) 

 Thus provides us with a computable estimate of the error nD in the approximation )( 12 +nh ty  and it can be used 

to help us decided whether the step h being used is just right, too big, or too small.
 

 For the Fuzzy Initial Value Problems, the computable estimate of the error 















 −
≈

−
≈

++++

1 - 2

)( )(
 ,

1 - 2

)( )(
112112

p

nhnh

np

nhnh

n

tyty
D

tyty
D in the approximation ( ))( ),( 1212 ++ nhnh

tyty
. 

 
Suppose now that we are given some local error tolerance ε  and that we wish to keep the estimated error 

( )nn DD  , below the local error tolerance per unit step, i.e., we want 

 
( ) h   , ε≤nn DD                                                                                                                                                    (6.5) 

 Assume that we have computed ( ) ( ))( ,)( ,)( ),( 121211 ++++ nhnhnhnh
tytytyty and( )nn DD  , . We must now 

decide on whether to accept the value ( )1212
( ,)( ++ nhnh
tyty and on what step h  to use for the next integration. From the 

given error tolerance ,ε we compute a lower error bound .  εε <′  we have the following possibilities: 

• 

εε    
h

D
 ,

h

D
max  nn <









<′

 

 In this case we accept the value )( 12 +nh ty and continue the integration from 1+nt  using the same step size h  

• 

ε>








 

h

D
 ,

h

D
max nn
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 In this case the error is too large, hence we must reduce h  - say to 2/h - and integrate again from the point 

n tt =  

• 

ε ′<








  

h

D
 ,

h

D
max nn

 

 In this case we are getting more accuracy than required. We accept the value ( )1212
( ,)( ++ nhnh
tyty  replace                

h  - by say to h2 - and integrate from 1+nt . 

 If we restrict the interval step size to halving or doubling, then the lower bound ε ′ can be set to 1p  +=′ εε . 

 For a
thp order method since halving the step size reduces the error by approximately 

 
12/1 +p
.Hence 32 /   εε =′ for p = 4. Actually it is not advisable to change the step size too often, and to be safe 

one might use 50 /   εε =′ . 

7. NUMERICAL RESULTS 

Example 7.1 

 Consider the following fuzzy differential equation with fuzzy initial value 

 

( ) 4 ( ) 4 ( ) 0      (t 0)

(0) (2 ,4 )

(0) (5 ,7 )

y t y t y t

y

y

α α
α α

′′ ′− + = ≥
 = + −
 ′ = + −

 

 The exact solution is as follows: 

 

2 2

2 2

( , ) (2 ) (1 ) )

( , ) (4 ) ( 1) )

t t

t t

y t r r e r te

y t r r e r te

= + + −

= − + −  

 Here our proposed method i.e. nonlinear trapezoidal method based on logarithmic mean is used to solve the above 

problem. Interval halving method is used to control the step by setting some error tolerance 

 ,0001.0=ε and a lower 

error bound 000002.0 =′ε . 

 The following table 1 provides the computed ratio between the estimate of error and the value of h when the 

values of r = 0, 0.2, 0.4, 0.6, 0.8 and 1 with t = 1. To keep the estimate error ( )nn DD  ,  below the local error tolerance per 

unit step, we have to check ε≤
h

Dn
and ε≤

h

Dn for the lower and upper cut values
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 And the following figure is the graphical representation of the approximate value with the  r – level cut                    

when t = 1. 

Table 1: The Ratio between the Estimate of Error and H by Using the Interval Halving Method for T = 1 

H 

r =0 r =0.2 r =0.4 

h

Dn
 

h

Dn  
h

Dn
 

h

Dn  
h

Dn
 

h

Dn  

0.5 0.068821333 0.050567867 0.0570944 0.038378667 0.0453284 0.0262544 
0.25 0.1108176 0.109466133 0.089005867 0.0871872 0.067150667 0.06497413 
0.125 0.2399344 0.2379376 0.1918256 0.1904544 0.1437904 0.14290987 
0.0625 0.410944 0.4065312 0.328440533 0.325618133 0.246090667 0.24449813 
0.03125 0.567025067 0.562382933 0.453314133 0.450365867 0.3397504 0.33810347 

H 

r = 0.6 r = 0.8 r = 1.0 

h

Dn
 

h

Dn  
h

Dn
 

h

Dn  
h

Dn
 

h

Dn  

0.5 0.03352027 0.014191067 0.021667333 0.002185333 0.009766533 0.009766533 
0.25 0.04525147 0.0428224 0.023306933 0.020727467 0.001314667 0.001314667 
0.125 0.0958288 0.095300267 0.047939733 0.047622933 1.23E-04 1.23E-04 
0.0625 0.16389867 0.163181867 0.081869867 0.081677867 0.0000096 0.0000096 
0.03125 0.22633813 0.225608533 0.113083733 0.112900267 0 0 

 

 

Figure 1 

Example 7.2 

 Consider the following fuzzy differential equation with fuzzy initial value 

 

( ) 2 ( ) 3 ( )       (0 t 1)

(0) (3 ,5 )

(0) ( 3 , 1 )

(0) (8 ,10 )

y t y t y t

y

y

y

α α
α α

α α

′′′ ′′ ′= + ≤ ≤
 = + −
 ′ = − + − −
 ′′ = + −  
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h=0.125
h=0.0625
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 The eigen value-eigenvector solution is as follows:

3 31 7 11 1 7 19
( , ) ( ( ) , ( ) ).

3 12 4 3 12 4
t t t ty t r e r e e r e− −= − + + + − + + −  

 The following table 2 gives the results using the proposed method. 

Table 2: Approximate, Exact and Absolute Error Values When r=1 and t=1 Using Step Size Control 

h y  Y  
Abs.Error 

of y  y  Y  
Abs.Error 

of y  

0.5 12.21969 12.76278 1.20E+00 12.21969 12.76278 1.20E+00 
0.25 12.70519 12.76278 2.11E-01 12.70519 12.76278 2.11E-01 
0.125 12.73719 12.76278 6.66E-02 12.73719 12.76278 6.66E-02 
0.0625 12.75128 12.76278 1.42E-02 12.75128 12.76278 1.42E-02 
0.03125 12.75985 12.76278 3.91E-03 12.75985 12.76278 3.91E-03 
0.015625 12.76207 12.76278 1.07E-03 12.76207 12.76278 1.07E-03 
0.007813 12.76264 12.76278 2.76E-04 12.76264 12.76278 2.76E-04 
0.003906 12.76276 12.76278 5.47E-05 12.76276 12.76278 5.47E-05 
0.001953 12.76277 12.76278 1.65E-05 12.76277 12.76278 1.65E-05 
0.000977 12.76278 12.76278 3.88E-06 12.76278 12.76278 3.88E-06 
0.000488 12.76278 12.76278 1.06E-06 12.76278 12.76278 1.06E-06 
0.000244 12.76278 12.76278 2.68E-07 12.76278 12.76278 2.68E-07 
0.000122 12.76278 12.76278 4.61E-08 12.76278 12.76278 4.61E-08 

  

 By Setting some local error tolerance  ,0001.0=ε and a lower error bound 000002.0 =′ε ,the ratio of 

estimate of error ( )nn DD  , and the value of h are computed and listed in table 3 when the values of r = 1 and t = 1. 

Table 3: The Ratio between the Estimate of Error Dn and h by Using the Interval 
 Halving Method for r = 1 and t = 1 for Example 7.2 

h 
h

Dn
 

h

Dn  

0.5 0.064732667 0.064732667 
0.25 0.008534667 0.008534667 
0.125 0.007513067 0.007513067 
0.0625 0.0091424 0.0091424 
0.03125 0.004746667 0.004746667 
0.015625 0.002397867 0.002397867 
0.007813 0.001075131 0.001075131 
0.003906 1.71E-04 1.71E-04 
0.001953 1.37E-04 1.37E-04 
0.000977 1.36E-04 1.36E-04 
0.000488 1.37E-04 1.37E-04 
0.000244 0.00E+00 0.00E+00 

 
8. CONCLUSIONS 

 In this paper, a numerical method for solving Nth- order fuzzy initial value problem is presented. In this method 

Nth- order fuzzy linear differential equation is converted to a fuzzy system which will be solved with the non-linear 

trapezoidal method based on logarithmic mean. For the numerical example 7.1, using the method of interval halving and 
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by comparing the ratio between the estimate of error and the value of h at r=1 and t=1from the table 1 and the approximate 

value from the figure 1, it is concluded that the proposed method gives the required accuracy when the value of                         

h = 0.0625for solving the second order FIVP. From the tables 2 and 3 of example 2, it is concluded that the proposed 

method with step size control works well to get the desired accuracy in solving the Nth- order FIVPs. By using interval 

halving in step size control the accuracy for the example 7.2 is obtained at h=0.000244which is achieved using the 

software MATLAB. 
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